Bushing Inspection And Diagnostics

2022-09-03 07:35:38 By : Ms. Lily lau

Curing Shock, Strut and Suspension Noise

Servicing Tires With 18-In.-Plus Rims

Curing Shock, Strut and Suspension Noise

Servicing Tires With 18-In.-Plus Rims

Sponsored By BCA Bearings by NTN

This webinar is part of "AAPEX Repair Shop HQ Webinar Series: An 8-Part Webinar Series." Sponsored by AAPEX.

The typical repair shop is busier than ever – but what happens when the going gets rough? Many of today’s shop owners have never experienced a significant economic downturn. Has your shop prepared to weather any storms that are on the horizon, or have you just been keeping up with current demands? During this webinar you’ll hear real shops share a “just in case” safety briefing.

The August issue includes technical and management content and is free to download and read.

Don't be afraid to work on battery packs. However, you should be mindful of the potential damage high voltages can cause.

The secret to this job is building the total package that optimizes the chassis, springs and ride control components.

Brake & Front End serves repair shops conducting a high volume of undercar repairs by providing application-specific technical information and solutions to address emerging trends in the undercar repair segment. By subscribing, you’ll receive the ShopOwner digital edition magazine (12 times/year) featuring articles from Brake & Front End and the Brake & Front End eNewsletter (twice weekly). Access to digital editions, contests, news, and more are ready for you today!

Brake & Front End serves repair shops conducting a high volume of undercar repairs by providing application-specific technical information and solutions to address emerging trends in the undercar repair segment. By subscribing, you’ll receive the ShopOwner digital edition magazine (12 times/year) featuring articles from Brake & Front End and the Brake & Front End eNewsletter (twice weekly). Access to digital editions, contests, news, and more are ready for you today!

Rock Auto's VP of Marketing shares the company's history as a Dot Com and as a player in the automotive aftermarket.

Don’t settle for “almost” - it matters where the engine is manufactured or remanufactured. Sponsored by ACDelco.

GM transmissions and transfer cases are unique to each individual vehicle. This video is sponsored by ACDelco.

Don’t settle for “almost” - it matters where the engine is manufactured or remanufactured. Sponsored by ACDelco.

Click here  to view past issues.

Most suspension system components pivot upon a rubber bushing that is compressed between an inner and outer metal sleeve. Because the compressed rubber bushing has no moving parts, it allows a maximum range of travel throughout a single plane without the frictional wear created in a conventional metal-to-metal bushing.

Most suspension system components pivot upon a rubber bushing that is compressed between an inner and outer metal sleeve. Because the compressed rubber bushing has no moving parts, it allows a maximum range of travel throughout a single plane without the frictional wear created in a conventional metal-to-metal bushing. Unfortunately, as the bushing ages, it acquires a “set” that is easily disturbed when a vehicle’s steering system is realigned. When this happens, the bushing begins to separate from its metal sleeve and becomes, in essence, a frictional wearing component.AdvertisementAs the rubber begins to twist inside the sleeve, excess clearance develops in the suspension system that, in turn, causes changes in steering and suspension geometry. In most cases, a rubber bushing separated from its shell or sleeve develops a characteristic “black ring” around its outer circumference. Hydraulic mounts may leak and there will be evidence of a leak around the bushing. BUSHING INSPECTION Oftentimes, a bushing will fail because of exposure to extreme heat or fluids from the engine or transmission. If the problem is not addressed, the new component will fail sooner than expected. In many cases, a worn axle seal on a transmission or transfer case can kill a control arm bushing very quickly.AdvertisementWorn suspension bushings may cause excessive side-to-side caster angle and toe angle changes during steering, braking and acceleration driving modes. More subtle symptoms of worn suspension bushings are inconsistent camber and caster angle readings, or the need to make major positive camber angle adjustments during the wheel alignment process. The best way to inspect suspension bushings in a loaded condition is to move the vehicle onto a drive-on lift. During your inspection process, it’s important to visualize exactly how the chassis loads each bushing. Looking from the driver’s seat, the vehicle loads the left front and rear independent suspension in a clockwise direction. The right front and rear independent suspension loads in a similar, but counter-clockwise manner. When suspension loading is taken into account, it’s easy to see why the inner and outer bushing sleeves should appear to be concentric. If the bushing doesn’t appear to be concentric, the rubber inside the bushing has lost its resiliency and has taken a “set” because of suspension system loading.AdvertisementLess obvious, but still important, we should also understand that braking forces tend to twist the suspension in the direction of wheel rotation. Although brake torque might be less of a factor than vehicle load when analyzing suspension wear, it should be taken into account if the customer complaint involves a brake pull or brake clunking issue. Similarly, the thrust developed by the driving wheels tends to pull the suspension inward, toward the vehicle’s centerline. If the vehicle is front-wheel drive and has front-mounted steering linkage, the toe-in effect may be less than if the vehicle has rear-mounted steering linkage. Many bushings are designed with voids in the material to allow a bushing to be more compliant in one direction, while allowing some play in the other direction. Some bushings use fluid-filled chambers that can control the stiffness of the bushing depending on the amount and frequency of the movement.AdvertisementMany modern bushings must be properly oriented in the suspension component. If it is not properly aligned, it will cause ride quality problems and premature failure of the bushing. When these types of bushing are installed, they need to have the final tightening and torque applied when the suspension is loaded. Worn bushings and tie rod ends can cause knocking noises and toe angle changes during acceleration and deceleration driving modes. The key to diagnosing worn rubber suspension bushings is to visualize the forces taking place in the suspension system, and then use that information to inspect the bushings for wear patterns that may be otherwise overlooked in standard “dry-park” and visual inspection testing.

As the rubber begins to twist inside the sleeve, excess clearance develops in the suspension system that, in turn, causes changes in steering and suspension geometry. In most cases, a rubber bushing separated from its shell or sleeve develops a characteristic “black ring” around its outer circumference. Hydraulic mounts may leak and there will be evidence of a leak around the bushing.

BUSHING INSPECTION Oftentimes, a bushing will fail because of exposure to extreme heat or fluids from the engine or transmission. If the problem is not addressed, the new component will fail sooner than expected. In many cases, a worn axle seal on a transmission or transfer case can kill a control arm bushing very quickly.

Worn suspension bushings may cause excessive side-to-side caster angle and toe angle changes during steering, braking and acceleration driving modes. More subtle symptoms of worn suspension bushings are inconsistent camber and caster angle readings, or the need to make major positive camber angle adjustments during the wheel alignment process.

The best way to inspect suspension bushings in a loaded condition is to move the vehicle onto a drive-on lift. During your inspection process, it’s important to visualize exactly how the chassis loads each bushing. Looking from the driver’s seat, the vehicle loads the left front and rear independent suspension in a clockwise direction. The right front and rear independent suspension loads in a similar, but counter-clockwise manner.

When suspension loading is taken into account, it’s easy to see why the inner and outer bushing sleeves should appear to be concentric. If the bushing doesn’t appear to be concentric, the rubber inside the bushing has lost its resiliency and has taken a “set” because of suspension system loading.

Less obvious, but still important, we should also understand that braking forces tend to twist the suspension in the direction of wheel rotation. Although brake torque might be less of a factor than vehicle load when analyzing suspension wear, it should be taken into account if the customer complaint involves a brake pull or brake clunking issue.

Similarly, the thrust developed by the driving wheels tends to pull the suspension inward, toward the vehicle’s centerline. If the vehicle is front-wheel drive and has front-mounted steering linkage, the toe-in effect may be less than if the vehicle has rear-mounted steering linkage.

Many bushings are designed with voids in the material to allow a bushing to be more compliant in one direction, while allowing some play in the other direction. Some bushings use fluid-filled chambers that can control the stiffness of the bushing depending on the amount and frequency of the movement.

Many modern bushings must be properly oriented in the suspension component. If it is not properly aligned, it will cause ride quality problems and premature failure of the bushing. When these types of bushing are installed, they need to have the final tightening and torque applied when the suspension is loaded. Worn bushings and tie rod ends can cause knocking noises and toe angle changes during acceleration and deceleration driving modes.

The key to diagnosing worn rubber suspension bushings is to visualize the forces taking place in the suspension system, and then use that information to inspect the bushings for wear patterns that may be otherwise overlooked in standard “dry-park” and visual inspection testing.

Chassis:  Hydraulic Suspension Bushings

Chassis:  Diagnosing Active Roll Bars

Chassis:  Automotive Suspensions: Replacing Weak Springs

Chassis:  Mercedes-Benz Air Suspension

Technical Resources for diagnosing and servicing undercar components