Monotube Or Twin Tube, What Is The Best For The Application?

2022-08-08 15:27:05 By : Ms. Mandy Zhang

How Well Do You Know Your Driveshaft?

How To Answer Customer Ride Control Questions

TPMS Valve Stems – What Are The Trends? What Is The Future?

How Well Do You Know Your Driveshaft?

How To Answer Customer Ride Control Questions

TPMS Valve Stems – What Are The Trends? What Is The Future?

Sponsored By BCA Bearings by NTN

Sponsored By Carter Fuel Systems

Sponsored By NGK Spark Plugs

AC Diagnostics: Troubleshooting Pressures and Temperatures

The most difficult AC complaints to resolve are the system blows warm, or the air is not as cold as it once was. The causes of the declining performance could be caused by a multitude of components and conditions. In a 45-minute webinar, the experts from Transtar AC will cover the possible causes of AC failure.

The training session will cover:

Speakers Andrew Markel, Director of Technical Content, ShopOwner Dennis Husband, ASE Certified Technician, Transtar AC

Sponsored By BCA Bearings by NTN

The July issue includes technical and management content and is free to download and read.

Presenting your customer with inspection results and benefits of replacement will help sell the job.

The reality is that if you can master some very general skills, ADAS is not rocket science.

Brake & Front End serves repair shops conducting a high volume of undercar repairs by providing application-specific technical information and solutions to address emerging trends in the undercar repair segment. By subscribing, you’ll receive the ShopOwner digital edition magazine (12 times/year) featuring articles from Brake & Front End and the Brake & Front End eNewsletter (twice weekly). Access to digital editions, contests, news, and more are ready for you today!

Brake & Front End serves repair shops conducting a high volume of undercar repairs by providing application-specific technical information and solutions to address emerging trends in the undercar repair segment. By subscribing, you’ll receive the ShopOwner digital edition magazine (12 times/year) featuring articles from Brake & Front End and the Brake & Front End eNewsletter (twice weekly). Access to digital editions, contests, news, and more are ready for you today!

How does a turbocharger work? Let's talk about it in simple terms. This video is sponsored by Standard Motor Products.

Don’t settle for “almost” - it matters where the engine is manufactured or remanufactured. Sponsored by ACDelco.

GM transmissions and transfer cases are unique to each individual vehicle. This video is sponsored by ACDelco.

Don’t settle for “almost” - it matters where the engine is manufactured or remanufactured. Sponsored by ACDelco.

Click here  to view past issues.

Most shocks and struts look the same. But inside, there can be significant differences.

From the outside, most shock absorbers and struts look pretty much alike: a round steel tube that telescopes up and down with bushings or fittings on both ends. But inside there can be significant design differences that affect not only the ride control characteristics and performance of the damper, but also its cost. Last month, we covered a brief history of shock absorbers and the advantages of the more common “twin-tube” design. This month, we’re taking a closer look at the other style of shock, the “monotube” design.AdvertisementIn a conventional twin-tube shock absorber, the inner piston chamber is surrounded by an outer tube that acts as the fluid reservoir. As the shock pumps up and down, the action of the piston forces the hydraulic oil inside to flow back and forth through valving in the bottom of the shock into the outer fluid reservoir. In a monotube shock, there is no outer fluid reservoir. All the fluid remains in the piston chamber and a floating piston separates the fluid from a high-pressure gas charge. As the piston moves down, the fluid pushes against the floating piston and compresses the gas charge underneath it. The gas is actually nitrogen (air with oxygen and moisture removed). This creates a sort of “air spring” effect that keeps the fluid under constant pressure to reduce foaming as it flows back and forth through the orifices and valves in the piston. For the monotube design to work, the gas pressure under the floating piston in the bottom of the shock must be quite high: 360 psi in the original Bilstein design, though some other manufacturers use pressures in the 260-psi range today. This also requires a good seal on the floating piston and a highly polished surface inside the piston tube — both of which increase the manufacturing cost of the shock. When the monotube design was invented back in the 1950s, it was a revolutionary breakthrough in shock absorber technology. The floating piston and high-pressure gas charge solved the foaming problem that had plagued conventional hydraulic shocks for a long time. When the fluid foams, the tiny bubbles offer less resistance to the motions of the piston, causing the dampening characteristics of the shock to fade. This allows more wheel bounce and suspension motion and hurts handling. So, when the first monotube gas charged shocks came out, it made a dramatic improvement in handling control. Fluid leaks and loss of the gas charge will reduce the shock’s ability to control the suspension. The gas charged monotube design was invented by a Frenchman named DeCarbon, who worked with a German shock manufacturer named Bilstein to get his design patented in 1956. Two years later, Mercedes became the first automaker to install monotube shocks as original equipment on some of their cars.AdvertisementBecause the gas-charged monotube design was protected by patents, Bilstein had a monopoly on the technology up until 1971 when their patents expired. Other shock manufacturers, such as Koni, KYB, Tokiko, Monroe and Sachs, began producing monotube shocks of their own, and also added gas charging to many conventional twin-tube shocks. Monotube shocks were widely used in racing in the 1960s and 1970s and found their way into NASCAR in the 1980s. Since then, monotube shocks have also been used as original equipment on a variety of cars including Mercedes, Audi, Porsche, BMW, Saab and Volvo, 1993 and newer Camaro and Firebird, late-model Corvettes and even some pickup trucks. ADVANTAGES In addition to reducing fluid foaming for better ride control (which is the gas-charged monotube shock’s main advantage), the design has additional advantages over a conventional twin-tube shock:AdvertisementThe monotube shock provides better heat dissipation and cooling than a twin-tube shock. There is no outer tube or fluid reservoir to inhibit heat flow, so the monotube shock runs cooler and delivers more consistent ride control.A monotube shock is lighter than a twin-tube shock that has the same external diameter. This reduces unsprung weight and allows the wheels and tires to follow the road more closely.A monotube shock can be mounted in any position (right side up, upside down or even sideways) and still work. A twin-tube shock uses gravity to drain the fluid down through the valving in the bottom, and to maintain the gas charge in the outer reservoir. But a monotube has a floating piston and no reservoir, so the orientation of the shock does not matter. On racing applications, such as Formula 1 or Indy Cars, the shocks can be mounted sideways inside the body to reduce drag for better aerodynamics.A monotube shock has a larger diameter piston than a twin-tube shock that has the same external dimensions, which gives the shock greater sensitivity for small piston motions.Monotube shocks are used for many coil-over applications because of their compact design. Many of these applications also feature adjustable valving so the ride characteristics can be fine-tuned or changed depending on how the vehicle is being driven. REPLACEMENT MARKET Like any type of shock absorber, a monotube shock won’t last forever. Over time, the piston seals can wear as can the shaft seal at the top of the shock. Fluid leaks and loss of the gas charge will reduce the shock’s ability to control the suspension, so eventually the shocks will have to be replaced. According to market research, 86% of vehicles that end up in a salvage yard still have their original shocks or struts in place. Nobody ever replaced the shocks or struts — even though they probably needed it. The point here is that many vehicles are driving around with shocks or struts that are weak and should be replaced to restore like-new ride control and handling. Monroe currently recommends replacing the original equipment shocks and struts every 50,000 miles. If more motorists would do that, the shock/strut aftermarket could grow from its current $800 million a year in sales to who knows what? Yet the replacement market for shocks and struts remains flat.AdvertisementDIAGNOSIS A test ride is probably the best way to detect weak shocks or struts that need to be replaced, but a traditional bounce test is still a quick way to check for weak dampers, too. If the suspension bounces more than once after rocking and releasing the bumper, chances are the original shocks or struts are worn and should be replaced to restore safe handling. A visual inspection of the shocks and struts should always be made anytime a vehicle has a tire wear problem, or you are doing an alignment, brake job or other undercar repairs or service work. Look for obvious signs of trouble such as fluid leaks, severe corrosion, broken or damaged mounts, signs of suspension bottoming or cupped wear on any of the tires. If you discover a shock or strut that has a problem or is getting weak, bring it to your customer’s attention and offer to replace their old shocks or struts with new ones. You should also ask them about their driving needs, what kind of ride they prefer, then discuss any possible suspension upgrades that would be a benefit to them. You might discuss the advantages of upgrading to some type of performance shock (gas-charged monotube) or adjustable dampers if that type of product would be of interest.

In a conventional twin-tube shock absorber, the inner piston chamber is surrounded by an outer tube that acts as the fluid reservoir. As the shock pumps up and down, the action of the piston forces the hydraulic oil inside to flow back and forth through valving in the bottom of the shock into the outer fluid reservoir. In a monotube shock, there is no outer fluid reservoir. All the fluid remains in the piston chamber and a floating piston separates the fluid from a high-pressure gas charge.

As the piston moves down, the fluid pushes against the floating piston and compresses the gas charge underneath it. The gas is actually nitrogen (air with oxygen and moisture removed). This creates a sort of “air spring” effect that keeps the fluid under constant pressure to reduce foaming as it flows back and forth through the orifices and valves in the piston.

For the monotube design to work, the gas pressure under the floating piston in the bottom of the shock must be quite high: 360 psi in the original Bilstein design, though some other manufacturers use pressures in the 260-psi range today. This also requires a good seal on the floating piston and a highly polished surface inside the piston tube — both of which increase the manufacturing cost of the shock.

When the monotube design was invented back in the 1950s, it was a revolutionary breakthrough in shock absorber technology. The floating piston and high-pressure gas charge solved the foaming problem that had plagued conventional hydraulic shocks for a long time. When the fluid foams, the tiny bubbles offer less resistance to the motions of the piston, causing the dampening characteristics of the shock to fade. This allows more wheel bounce and suspension motion and hurts handling. So, when the first monotube gas charged shocks came out, it made a dramatic improvement in handling control.

Fluid leaks and loss of the gas charge will reduce the shock’s ability to control the suspension.

The gas charged monotube design was invented by a Frenchman named DeCarbon, who worked with a German shock manufacturer named Bilstein to get his design patented in 1956. Two years later, Mercedes became the first automaker to install monotube shocks as original equipment on some of their cars.

Because the gas-charged monotube design was protected by patents, Bilstein had a monopoly on the technology up until 1971 when their patents expired. Other shock manufacturers, such as Koni, KYB, Tokiko, Monroe and Sachs, began producing monotube shocks of their own, and also added gas charging to many conventional twin-tube shocks.

Monotube shocks were widely used in racing in the 1960s and 1970s and found their way into NASCAR in the 1980s. Since then, monotube shocks have also been used as original equipment on a variety of cars including Mercedes, Audi, Porsche, BMW, Saab and Volvo, 1993 and newer Camaro and Firebird, late-model Corvettes and even some pickup trucks.

In addition to reducing fluid foaming for better ride control (which is the gas-charged monotube shock’s main advantage), the design has additional advantages over a conventional twin-tube shock:

Like any type of shock absorber, a monotube shock won’t last forever. Over time, the piston seals can wear as can the shaft seal at the top of the shock. Fluid leaks and loss of the gas charge will reduce the shock’s ability to control the suspension, so eventually the shocks will have to be replaced.

According to market research, 86% of vehicles that end up in a salvage yard still have their original shocks or struts in place. Nobody ever replaced the shocks or struts — even though they probably needed it. The point here is that many vehicles are driving around with shocks or struts that are weak and should be replaced to restore like-new ride control and handling.

Monroe currently recommends replacing the original equipment shocks and struts every 50,000 miles. If more motorists would do that, the shock/strut aftermarket could grow from its current $800 million a year in sales to who knows what? Yet the replacement market for shocks and struts remains flat.

A test ride is probably the best way to detect weak shocks or struts that need to be replaced, but a traditional bounce test is still a quick way to check for weak dampers, too. If the suspension bounces more than once after rocking and releasing the bumper, chances are the original shocks or struts are worn and should be replaced to restore safe handling.

A visual inspection of the shocks and struts should always be made anytime a vehicle has a tire wear problem, or you are doing an alignment, brake job or other undercar repairs or service work. Look for obvious signs of trouble such as fluid leaks, severe corrosion, broken or damaged mounts, signs of suspension bottoming or cupped wear on any of the tires.

If you discover a shock or strut that has a problem or is getting weak, bring it to your customer’s attention and offer to replace their old shocks or struts with new ones. You should also ask them about their driving needs, what kind of ride they prefer, then discuss any possible suspension upgrades that would be a benefit to them. You might discuss the advantages of upgrading to some type of performance shock (gas-charged monotube) or adjustable dampers if that type of product would be of interest.

Chassis:  Mercedes-Benz Air Suspension

Chassis:  Understanding Off-Road Shocks

Chassis:  Alignment Specs – Gen VI Mustang

Chassis:  Guideline To Visually Inspecting A Shock Or Strut

Technical Resources for diagnosing and servicing undercar components